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Methods have been developed for predicting the thermal excitation of certain structurally forbidden 
reflections in simple crystals. The excitation of these reflections is related to the anharmonicity and 
anisotropy of the atomic thermal motion. The methods are illustrated by their application to the 
cuprite and A 15 structures. New extinction rules for these reflections are derived, and their structure 
factors are given in terms of the thermal parameters of the structures. 

Introduction 

The experimental observation of very weak Bragg 
maxima forbidden by the structure in simple crystals 
dates from W. H. Bragg's (1921) measurement of the 
222 reflection of diamond. Early attempts to understand 
and interpret this anomaly in the diffraction pattern 
of diamond include those of Renninger (1935) and 
Pisharoty (1941). More recent work (Renninger, 1955; 
G6tlicher & W61fel, 1959; Renninger, 1960; Demarco 
& Weiss, 1965; and Colella & Merlini, 1966) has 
extended the observation to silicon and germanium 
and has included a determination (Roberto & Batter- 
man, 1970) of the unusual temperature dependence of 
this reflection. The phenomenon is now understood to 
be partly due to the noncentrosymmetric electron 
distribution about the atomic sites in elements with the 
diamond structure and partly to the anharmonic 
character of the thermal motion in this structuie. 
That there is a contribution to the intensity from thermal 
motion is evident from the neutron measurements of 
Keating, Nunes, Batterman & Hastings (1971). The 
measurements of Trucano & Batterman (1972) of the 
442 reflection in silicon extend the phenomenon to 
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the general class of structurally forbidden reflections 
for which h, k, and l are all even but nonzero, and 
h + k + l = 2 ( 2 p  + 1). Their intensity data as a function 
of temperature also show that the effects of electron 
distribution and thermal motion tend to oppose each 
other, leading to a characteristic temperature at which 
the intensity of the 442 vanishes. 

In spite of the attention given to thermally excited 
forbidden reflections in the diamond structure, to the 
writer's knowledge they have not been studied in any 
other crystal. It is our purpose here to suggest that the 
phenomenon may be fairly common, to provide a basis 
for predicting which of the structurally forbidden 
Bragg maxima are excited, and to develop methods for 
interpreting their integrated intensities in terms of the 
thermal parameters of the crystal. For simplicity we 
will omit diffraction effects related to nonspherical 
atomic electron distributions, taking the atomic scat- 
tering factor to be real and isotropic in reciprocal space. 
The development is illustrated by its application to 
cuprite and the to A 15 structure, a prototype for which 
is the intermetallic compound Nb3Sn. 

Forbidden reflections in cuprite 

The mineral cuprite, C u 2 0  , is cubic with two formula 
weights per cell. The space group is Pn3m and there are 

A C 30A - 3* 
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four copper atoms in special positions b (0,0,0; 
0,~,½; ~,0,½; i, ~,~-,0) and two oxygen atoms in special 
positions a _+ (¼,¼,¼). Hence without regard to thermal 
motion its structure factor is 

Fhk~=fcu{ 1 +exp [ni(h + k)] +exp [ni(h + l)] 

(h+~+/) ,  (1) + exp [ni(k +/)]} + 2f0 cos -~ 

and if h, k, and l are mixed and have an odd sum, 
Fhkt = 0. If we view thermal motion as a dynamic per- 
turbation of the periodicity of the crystal, we expect 
the sharp features of the intensity distribution in 
reciprocal space, the Bragg maxima, to be determined 
by the average structure. Hence in general we may 
write for the time averaged structure factor 

(F~kl)= 2 f  n exp [ ik.  r.] (exp [ ik.  8 . ]) .  (2) 
n 

Here 8. is a small time-dependent displacement vector 
of the nth atom in the unit cell from its average posi- 
tion r. and k is the diffraction vector times 2n. A con- 
sequence of the harmonic approximation is that 
(exp [ ik.  8 , ] )=exp  [ - ½ ( ( k .  ~,)2)], which is the usual 
harmonic Debye-Waller factor. Since we are here con- 
cerned with possible effects associated with anharmoni- 
city, we choose to write without approximation 

<exp [ik. 8,,])-----exp [-l<(k. 8,)2)1 
x <exp [½<(k. 8 , ) 2 ) + i k .  8,,]). (3) 

The second exponential on the right of (3) is the an- 
harmonicity factor. Any deviation of that quantity 
from unity is a manifestation of the anharmonic 
character of the thermal motion. Since in general 
<k. 8.> = 0, its series expansion may be written 

(exp [½((k. 8n) 2) + ik .  8,]) 
= 1 - - ~ i ( ( k .  8 . ) a ) - ~ ( ( k .  8.)2> 2 --~-~((k. 8n)4> 
--,A~-i((k. 8.) 2) ( ( k .  8 . )3)+ ,-½--6i((k. 8 . ) s ) +  . . .  

In what follows it is convenient to assume that 8, is suf- 
ficiently small that we may neglect terms of power 
higher than three in k .  8,. It will be clear, however, 
that the subsequent development may be readily 
modified to accomodate as many such terms as experi- 
ment may indicate useful. To this approximation, then, 
equation (2) becomes 

<rhk,) = ~ f .  exp [ik. r.] 
n 

x e x p [ - ½ < ( k .  8.)2)] {1--~i((k.  8,,)3)}. (4) 

We note that the approximation used in equation (4) 
automatically causes the thermal motion of an atom 
whose environment is centrosynunet~ic to be treated 
as harmonic, since in that case the average of any odd 
power of k .  ~i. must vanish. 

We consider the contribution to the average struc- 
ture.factor of cuprite, of the copper atom at the origin. 
Since the origin is a center of symmetry for CuzO, it 

must be simplyfcu exp [ - ½ ( ( k .  8,)1)]. With 

8 n = Xna 1 +yna2 + zna3 , 

x., y., and z. being small time-dependent pure numbers 
and the am'S being the unit-cell vectors in real space, 
and 

k = 2n(hb, + kb 2 + lb3), (6) 

the b,,'s being vectors reciprocal to the am triplet, we 
have 

½((k. 8,,)2)= 27~2{h2(x 2) -k kZ(y2,) + 12(z2,,) 

+ 2hk (x,,y,,) + 2kl(y,,z,,) + 2lh(z,,x,,)}. (7) 

For the atom at the origin, with two oxygen neighbors 
at +(¼,¼,¼), we must have that (x ,~)=(y2)=(z~) .  
However, since the principal axes of its anisotropic 
thermal ellipsoid (the point symmetry of its environ- 
ment is ~m) do not correspond to the cube axes, the 
cross terms of (7) do not vanish. Given, say, a positive 
value of x,,, y, will tend to be negative because of the 
oxygen atom at (¼, 7,1 14). 

Introduce the notation Mc, = 2n2(x2)(h 2 + k  2 + 12), 
the isotropic part of the Debye-Waller factor, and 

- Q = 4~ 2(x.y.) = 4~z 2 (y,,z,) = 47~ 2 (znx,).  
Then 

½((k. 5,,)2) = Mc, - Q(hk + kl + lh) 

and with Q treated as small, 

exp [ - ½ ( ( k .  8,)2)]=[1 +Q(hk  +kl+lh)]  exp [ - M e , ] .  
(8) 

Because its trigonal axis is in a [11T] direction, for 
the copper site at (½, ½, 0), we must have that 

(x,,y,,)= - (y,z,,) = - (z,,x,,). 

For it, a result analogous to equation (8) is 

exp [ - ½ ( ( k .  8,)2)]=[1 + Q ( h k - k l - l h ) ]  exp [ -Mcu]  • 

After a similar consideration of the remaining two 
copper sites in the unit cell, we find for the total copper 
contribution to the average structure factor 

Fcu =fcu exp [ -  Mcu]{[1 + Q(hk + k l+  lh)] 
+ [1 + Q(hk - k l -  lh)] exp [ni(h + k)] 
+ [ 1 + Q ( -  hk - kl  + lh)] exp [ni(h +/)] 
+ [ l + Q ( - h k + k l - l h ) ] e x p [ n i ( k + l ) ] } .  (9) 

If the indices are unmixed, to within the approxima- 
tions here used, equation (9) reduces to the conven- 
tional result, Fcu=4fcu exp [ -Mcu] ,  and there is no 
diffraction effect resulting from the anisotropy of the 
copper thermal motion. However, for mixed indices, 
with l taken as the index of different parity, equation 
(9) becomes 

Fcu=4fcuQhk exp [ -Mcu]  • (10) 

The cubic point symmetry of the oxygen sites (43m) 
causes equation (7) to reduce to a simple isotropic 
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f o r m :  

½<(k. 5,,)z>=2rcZ<x2>(hZ+k2+lZ)=Mo. (11) 

However these sites are not symmetry centers so that 
the anharmonicity factor of equation (3) or (4) must 
be considered. With the aid of equations (5) and (6), 
we find that 

-~<(k 6,)3> 4~z3 {h3(x~n> + k 3 (y,,>+13 3 (z,,>3 
• 3 

+ 3hkZ<x,,y~> + 3klZ<y,,zZ,,> + 3lh2<z,,xZ,,> 
+ 3hZk<xZ,,y,,>+ 3kZl(y~z,,>+ 3lZh(z~x,,> 
+ 6hkl<x,,y,,z,,> } . (12) 

Since it is evident that positive and negative values of 
x,, yn, and z, for the oxygen atoms are equally likely, 
it follows that <~>=(y3,>=<z~>=0. Since it is also 
evident that for a given y,, positive and negative x, 
are equally likely, we have that (x,y,Z>=0. Similarly 
the remaining terms of (12) vanish except that which 
contains the factor (x,y,,z,>. 

Hence with S=87~3<XnYnZn> for the oxygen atom at 
(¼, ¼, ¼), its contribution to the average structure factor 
is f0 exp [ -M0]  exp [~i/2(h+k+l)] (1- iShkl) .  That 
the effect of anharmonicity in the thermal motion of a 
tetrahedrally coordinated atom should be of this form 
has been pointed out by Willis (1969). 

Since the environment of the site (2,2,2) is anti- 
symmetric to that of (¼,¼,¼), the contribution of its 
occupant to the structure factor must be f0 exp [ -M0]  
exp [ - rci/2(h + k + l)] (1 + iShkl), and the total oxygen 
contribution is 

zc ( h + k + l )  F0 = 2f0 exp [ -  M0] cos -~- 

7Z 
+Shk l s in -2  ( h + k + l ) } .  (13) 

Combination of equations (10) and (13) gives for the 
structurally forbidden reflections, those for which h 
and k are even, l odd, and h + k + l =  4q _+ 1, 
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Fig. 1. A schematic representation of the nearest twelve neigh- 
bors of the A site ¼,0,½ in the A 15 structure. A atoms are 
shown as full circles and B atoms are shaded. The x axis is 
expanded relative to y and z for the sake of clarity• 

<Fhkt>=2hk{2fcuQ exp [-- Mc,] +_foSl exp [ -  M0]}. 
(14) 

Forbidden reflections in the A15 structure 

Compounds with the A15 structure type (Struktur- 
bericht, 1937) are ideally of the form A3B with two 
formula weights in a cubic cell and space group Pm3n. 
Six A atoms occupy special positions c (point sym- 
metry 42m)" i 1. ~,o,~-, ~,¼,o; o,½,¼; 2,0,½, ~,k,o; o,~,I; 
and there are two B atoms in special positions a (point 
symmetry m3): 0,0,0; ½, ½,1. If we neglect thermal 
effects the structure factor is 

Fhk~=f,{ 1 +exp [zci(h + k +/)]} +fa{exp [rci(h/2 +/)] 
x (1 + exp [x/h)] + exp [rci(k/2 + h)](1 + exp [n/k]) 
+exp [rci(l/2 + k)](1 +exp [zci/])}. (15) 

There are two general classes of hkl for which Fnkz 
vanishes: (1) h, k, and l are all odd. (2) One index is 
odd and the other two are both multiples of four, or 
one is odd and the other two are both odd multiples of 
two. 

The two B sites are both centrosymmetric with cubic 
environments, hence their contribution to the time 
average of the structure factor is 

Fs=f8 exp [--MB] {1 +exp [rci(h+k +/) ]} ,  

where MB = 2rc2<x2)(h 2 + k 2 + lZ). To our approxima- 
tions they make no contributions to forbidden reflec- 
tions and are of no further interest. 

However the A sites are not symmetry centers and 
their point symmetry is only tetragonal. Therefore we 
may expect effects resulting both from the anharmonic 
and anisotropic character of the thermal motion of 
their occupants. 

We consider the thermal motion of the occupant of 
the site (I, 0, ½). It has two A nearest neighbors at ao/2, 
four B next neaiest neighbors at a01/5/4, and eight A 
next nearest neighbors at a01/6/4. This array about the 
site is illustrated schematically in Fig. 1. 

In order to compute the various averages in equation 
(12) it is useful to introduce a probability density func- 
tion P(xyz) such that P(xyz)dxdydz is the probability 
that the relevant atom be found within the volume 
element at coordinates xyz in the sense of equation 
(5)• In terms of it we have 

We of course do not know P, but from the environ- 
ment of the site under consideration, we know some 
of its symmetry properties• Since it is evident from Fig. 
1 that the xy and xz planes are mirror planes it follows 
that 

P(xyz)=P(x.~z)=P(xy~.)=P(xp~.) . (17) 

It is also clear from the figure that the character of the 
yz plane is such that P is recovered upon reversal of 
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the sign of x, provided that the coordinates y and z are 
interchanged. Hence 

P(xyz) = P(.2zy) = P.2z.~) = P(Yfy) = P(g~)7) .* (18) 

Since from equations (18) S]~ I ] ~  P(xyz)dydz must be 

an even function of x, for q = r = 0 and p odd equation 
(16) is zero; hence (x3)=0.  Similarly, from equations 
(17) (y3)=  (z 3) =0.  Also from (17), since 

S zP(xyz)dz= yP(xyz)dy = O, 
- - o o  

for q or r =  1 equation (16) vanishes. So 

(x2y) = (xaz) = (y2z) = (z2y) = (xyz)  = O. 

We now consider (y2x). 

( y 2 x ) = l ] ~ I ~ I ~ y 2 x P ( x y z ) d x d y d z  

= S o ~ I ~ I ] ~ y 2 x P ( x y z ) d x d y  dz 

-S+o°°S~S2SyZxP( .2yz)dxdydz .  (19) 

By equations (18) the second integral on the right of 
(19) is 

S+~° S ~  S ~  yZxP(gyz)dxdydz 

= S+°° S ~  S ~  y2xP(xzy)dxdyd.z 

= S+o °° S ~  S ~  z2xP(xyz)dxdydz. 

So equation (19) becomes 

(yZx)=S+°°g2~S]~(y2-zZ)xP(xyz )dxdydz  

which is not zero since P(xyz)=/=P(xzy). By a similar 
argument we have that ( z 2 x ) = -  @2x), and equation 
(12) reduces to 

~;(0~ . 6n)a)=4rca(y2nxn)h(k2-12) . (20) 

We consider the anisotropy of the thermal motion of 
the atom at (¼, 0, ½). From the properties of P given by 
equations (17) and (18)there results 

( x y ) = ( y z ) = ( z x ) = O  
and 

(x 2) # ( f ) =  (zZ). 

So equation (7) becomes 

½((k. ~i,)2> = 2zt 2 { (x2,)h 2 + (y,2>(kZ + l z) } = Ma + och z 

* Symmetry properties of P analogous to equations (17) 
and (18) for an oxygen atom in cuprite are 
P (xyz) = P (2fiz) = P(2y~) = P (xfi~) = P (yxz) = P (zyx) = P (xzy). 
But P(xyz) ¢ P(.~yz) and P(xyz) ¢ P(.~fi~). 

where 
)VIA = 2zcZ(yZn)(hZ + k 2 + 12) 

and 
0c = 2zrZ((x,2, ) -- (yn2)). 

Hence with ~ small, 

exp [ - ½ ( ( k .  li,,)z)]=exp [ - M a ]  (1-o&2).  (21) 

Combination of equations (20) and (21) gives for the 
contribution of the A atom at (¼,0,½) to the average 
structure factor 

fA exp [zci(h/2 +l)]  exp [ - M a ]  {1 -M~z-iflh(k2-12)} 

where 
f l= 4zc3(y,2x,,). 

From the symmetry of the atomic arrangement 
about it, ( (k .  8,) 3) for the A atom at 4a,0,½ must 
simply be the negative of that quantity given by equa- 
tion (20), but ( (k .  8,) 2) must be the same for both 
sites. Hence the contribution to the average structure 
factor from the occupant of site 3 1 (~, 0, ~) is 

fA exp [rci(3h/2+l)] exp [--MA] {1-c~h2+iflh(k2-12)}. 

Similar considerations of the remaining A sites yields 
for the total contribution to the average structure factor 

FA=2fA exp [--MA] {exp [rci(h + l)] [(1-M72) 
x cos (rch/2)-flh(kZ-I 2) sin (nh/2)] 
+exp [rci(k + h)] [ ( 1 - e k  2) cos (r&/2)-f lk(12-h 2) 
xsin (nk/2)] + exp [raft+k)] [(1-c~l 2) cos (nl/2) 
- f l l ( h2 -k  2) sin (nl/2)]}. (22) 

For the class of forbidden reflections for which h, k, 
and l are are all odd, from equation (22) we have 

(F~k~) = -  2flfa exp [--MA] {h(kZ-I  2) sin (rch/2) 
+ k( lZ-  h z) sin (rck/2) + I(hZ- k 2) sin (re//2)}. 

(23) 

For those forbidden reflections for which, say, h is odd 
and k and l are both even multiples of two, or both 
odd multiples of two, there results 

(Fnk,) = 2fA(k 2 -  l 2) exp [-- MA] 
x {flh sin (rch/2)+7 cos (z&/2)}. (24) 

Discussion 

Our treatment of the anomalous contribution of 
thermal motion to the structure factor for cuprite 
indicates that most of the structurally forbidden Bragg 
maxima (those for which two indices are even and one 
odd) remain extinguished. In order that the reflection 
be thermally excited, from equation (14), neither of the 
even indices may be zero. For h z + k z + 12 < 30 (approx- 
imately the limit for Cu Kc~ radiation), of the twelve 
forbidden reflections, only four are thermally excited. 
From equation (14), their structure factors are 
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(Fz2~) = 16fcuQ exp [ - M c u ] +  8foS exp [ - M o ] ,  (25) 

(Fz23) = 16fcuQ exp [ - M c u ] - 2 4 f o S  exp [ - M 0 ] ,  (26) 

(Fa2~)=32fc, a exp [ - M c u ] -  16foS exp [ - M o ] ,  (27) 

(F42s)=32fcua exp [ -Mcu]+48foS  e x p [ - M o ] .  (28) 

We note that three of the excited reflections have 
extinguished companions with common h 2+k 2+l  2: 
221 (003), 223 (401), and 423 (205). Measurement of 
each reflection with its companion may be useful to 
insure that any observed intensity is not related to 
extraneous contributions such as the Renninger effect. 
With a knowledge of the atomic scattering factors and 
Debye-Waller factors, equations (25)-(28) may be used 
to determine the magnitudes and relative signs of the 
thermal parameters Q and S. 

Though the forbidden reflections fall into two classes 
for the A 15 structure, the criterion for their remaining 
extinguished is common to them all. From equations 
(23) and (24) we see that any forbidden reflection for 
which two of the indices are the same has zero average 
structure factor. Note from the equations that this 
criterion is relevant only to the magnitudes of the 
indices and not their signs. As in the case of cuprite, 
most of the reflections are not excited. 

For the class of forbidden reflections in the A 15 struc- 
ture for which all indices are odd, there are five with 
h2+k2+12< 100 which are thermally excited, three of 
which have extinguished companions : 531, 731 (553), 
751 (555), 753 (911), and 931. From equation (23), 
their intensities depend only on the anharmonicity 
parameter ft. 

For the second class of reflections whose structure 
factors are given by equation (24), there are fourteen 
thermally excited Bragg maxima with h 2 +k2+  12< 100. 
They are listed with their structure factors and for- 
bidden companions in Table 1. Note that there are two 
sets of three reflections - 740, 180, 562; and 762, 580, 
384 - such that each of the three is the same distance 
from the origin in reciprocal space. From either of 
these triplets, a measurement of their relative inten- 
sities yields the relative magnitudes and signs of the 
thermal parameters c~ and fl without a knowledge of 
either fA or MA. 

Table 1. Thermally excited forbidden reflections in the 
A 15 structure for which one index & odd and two are even 

(F~k,) Companion 
hkl h z+k 2+l 2 (fA exp [-- MA]) extinguished hkl 
140 17 32 (fl+g) 322 
340 25 32 ( - 3fl + g) 500 
162 41 64 ( f l -g)  
540 41 32 (5fl+ ~t) j 344 
362 49 64 ( - 3f l-  00 700 
740 65 32 (-7fl+tx) ] 
180 65 128 (fl+ ~x) l none 
562 65 64 (5fl- oc) 
380 73 128 ( -  3fl+ ct) 166 
184 81 96 (fl+ct) 900, 744, 366 
762 89 64 ( - 717- cx) ] 
580 89 128 (5fl+ ct) ]. 922 
384 89 96 ( -  3fl+tx) J 
940 97 32 (9fl+ ~) 566 

It is important to emphasize that the effects related 
to nonspherical atomic electron distributions, for 
which the atomic scattering factor may be complex 
and anisotropic in reciprocal space, have been omitted 
from our considerations. The results from diamond 
suggest that such effects may not be negligible. Such 
contributions to the forbidden reflections may be 
avoided by the use of neutrons. 
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